NON DESTRUCTIVE CONTROLS OF RADIOACTIVE WASTE AT CEA

8 th International Summer School on Nuclear Decommissioning and Waste Management

12-16 SEPTEMBER 2016, ISPRA
OUTLINES

• Nuclear Waste Classification
• The Characterization on Nuclear Waste at CEA
• The 2nd level controls or “Supercontrols”
• The Legacy Waste
• R&D on measurement technics
• Conclusion
• Nuclear Waste Classification
• The Characterization of Nuclear Waste at CEA
• The 2nd level controls or “Supercontrols”
• The Legacy Waste
• R&D on measurement technics
• Conclusion
<table>
<thead>
<tr>
<th>Massic Activity (Bq/g)</th>
<th>lower than 100</th>
<th>100 to 10^5</th>
<th>10^5 to 10^9</th>
<th>Higher than 10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity level and repository</td>
<td>(1) VLLW Very low level wastes (Storage at Centre de l’Aube -CIRES)</td>
<td>(2) LIL-SLt_{1/2}<31 y (Storage at Centre de l’Aube-CSA) low-level and intermediate-level, short life</td>
<td>(3) LA-LL low-level and intermediate-level, long life Intermediate storage final storage (project)</td>
<td>(5) HA High Activity Producer intermediate storage -> CIGEO (project)</td>
</tr>
<tr>
<td>Type of solid wastes</td>
<td>Debris, scrap iron, plastics,… mainly from the dismantling</td>
<td>Gloves, coats, glasses, scrap iron, …</td>
<td>Cladding, hulls and end caps from spent fuel, Wastes coming from glove boxes and hot cells, filters,…</td>
<td>Vitrified Fission Products coming from the fuel reprocessing</td>
</tr>
<tr>
<td>% of volume of French radioactive waste</td>
<td>20,1%</td>
<td>LIL-SL : 68,8 % LA-LL : 7,2 % IL-LL : 3,6%</td>
<td>0,2 %</td>
<td></td>
</tr>
<tr>
<td>% of activity</td>
<td>0,000003%</td>
<td>LIL-SL < 0,03% LA-LL < 0,009% IL-LL : 4,98%</td>
<td>94,98 %</td>
<td></td>
</tr>
</tbody>
</table>

2nd Level controls by CEA under ANDRA Spécification
• Nuclear Waste Classification
• The Characterization of Nuclear Waste at CEA
• The 2nd level controls or “Supercontrols”
• The Legacy Waste
• R&D on measurement technics
• Conclusion
OBJECTIVES: Check Conformity versus interim storage, transport and final disposal specifications -> SAFETY AND PUBLIC ACCEPTANCE

- Radiological specifications
 - α, $\beta\gamma$ activities
 - α after 300 years
 - Fissile matter amounts
- Geometrical specifications
 - Sizes and envelope thickness
 - Outside containers
 - Waste centering
- Physical specification
 - Free space remaining
 - Homogeneity, porosity
 - Local defects
- Chemical specification
 - Amount of limited materials
 - Forbidden materials
SEVERAL LEVELS OF CHARACTERIZATION:

- During Waste Production (AREVA, EDF, CEA, ...)
 - During fabrication
 - Quality control and final characterization

- During interim storage (producers) or before final disposal (ANDRA)

- 2nd level controls or “Supercontrôles” : for LIL-SL waste : specified by Andra for few tens of WP, “blind” controls performed by CEA : Expert labs for destructive and non destructive measurements.
THE CHARACTERIZATION OF WASTE PRODUCED CURRENTLY BY CEA: CASE OF IL-LL WASTE

Content: Waste from operation of nuclear installation, Waste coming from the dismantling

For most WP, characterization is done:
- Either by destructive measurements on samples (case of homogeneous WP),
- Either by non-destructive measurements on primary WP or non-conditioned WP.

Primary WP: 100 liters (measurable) -> compaction or concreted - > final WP: 870 liters (difficult to measure)

Measurable primary WP are:
- Either 100l ou 118l drums (final WP: 870 l αPu),
- Either 20 to 70l containers (final WP: 500 l MI).

Once in their final packaging, characteristics of the waste (physical, chemical, radiological ...) will be difficult (or impossible) to obtain with non-destructive methods.
THE CHARACTERIZATION TECHNICS:

- **Radiological Characterization (Activity, fissile mass)**
 Dose Rate measurement + nuclide spectra, gamma spectrometry, passive neutron measurement (sometime) and active (rarely)

- **Physical characterization (material)**
 X ray imaging: radiography et tomography

 + coupling with non destructive measurements

- **Chemical Characterization (forbidden or limited materials)**
 Sampling + chemical analysis
GAMMA SPECTROMETRY

Desintégration (α, β^-, β^+)

Desexcitation γ

Identification and quantification of radionuclides through his descendants

- Global Measurement
- Segmented Measurement
- Better resolution with Germanium Detectors

Standard gamma spectrometry device
100 liters WP
THE ADVANTAGES AND DRAWBACKS OF γ SPECTROMETRY

Advantages:
- Easy to implement
- Activity of numerous β/γ emitteurs
- Adapted for low density WP ($d<1,5$)

Drawbacks:
- Unsuitable for high volumes and/or high density WP
- Unsuitable for low energy gamma rays (case of actinides U and Pu)
- Needs a transfer function to take into account:
 - Density distribution
 - Activity distribution

$$A_{WP} = A_{measured \ outside \ WP}/ FT(E_{\gamma}, WP)$$
PASSIVE NEUTRON MEASUREMENT

Global measurement of neutron emission: (spontaneous fission + (α, n) reaction) : suited to Pu measurement

En ~ 2MeV => Slowing down – Thermalisation - detection

Indirect measurement of total Pu
: $^{238}\text{Pu} + ^{240}\text{Pu} + ^{242}\text{Pu} + (^{244}\text{Cm}, ^{241}\text{Am} \ldots)!$
• $\text{En} (^{240}\text{Pu})= 1020 \text{ n.s}^{-1}.\text{g}^{-1}$
• $\text{En} (^{238}\text{Pu})= 2590 \text{ n.s}^{-1}.\text{g}^{-1}$
• $\text{En} (^{244}\text{Cm})= 1,08 \times 10^7 \text{ n.s}^{-1}.\text{g}^{-1}$ -> a small quantity of Cm can hide Pu isotopes !!!

Needs Isotopic Composition (CI)
-> coupling with gamma spectrometry or nuclide spectra

• Global counting or coincidence ((α, n) rate)
ACTIVE NEUTRON MEASUREMENT

Global measurement of neutron emission after activation: induced fission by thermal neutrons
-> suited to the measurement of fissile isotopes of U and Pu

Neutron d'émission = 14 MeV (2.10^9 s⁻¹) -> Thermalisation -> Fissions -> fast neutron production -> Thermalisation -> Detection of prompt ou delayed neutrons

Indirect measurement of Pu:
■ Only fissiles isotopes
 235U + 239Pu + 241Pu (no more problems with Cm!)

■ Needs isotopic composition

Symetric cell – Chicade facility Cadarache
Achievable performances with passive neutron measurement
(Source at the center of a 118 liter drum - 30 minutes)

<table>
<thead>
<tr>
<th>Matrice</th>
<th>Empty drum</th>
<th>Cellulose d=0,14</th>
<th>PVC d=0,18</th>
<th>PVC d=0,25</th>
<th>Metal d=0,26</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε (%)</td>
<td>22,9</td>
<td>19,1</td>
<td>19,0</td>
<td>17,2</td>
<td>18,9</td>
</tr>
<tr>
<td>CE 240Pu (c/s/g)</td>
<td>39,6</td>
<td>27,5</td>
<td>27,2</td>
<td>22,3</td>
<td>27,0</td>
</tr>
<tr>
<td>Detection limit (g 240Pu)</td>
<td>$1,7.10^{-3}$</td>
<td>$2,5.10^{-3}$</td>
<td>$2,5.10^{-3}$</td>
<td>$3,1.10^{-3}$</td>
<td>$2,6.10^{-3}$</td>
</tr>
</tbody>
</table>

Detection limit about 1 mg of Pu in the best conditions

Achievable performances with active neutron measurement
(Source at the center of a 118 liter drum - 15 minutes)

<table>
<thead>
<tr>
<th>Matrice</th>
<th>Cellulose d=0,14</th>
<th>PVC d=0,25</th>
<th>Metal d=0,26</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 239Pu (c/s/mg)</td>
<td>12</td>
<td>0,3</td>
<td>4,2</td>
</tr>
<tr>
<td>Detection limit (mg 239Pu)</td>
<td>0,09</td>
<td>3,4</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Detection limit = few 100 µg of Pu in the best conditions
The non destructive analysis

The advantages and drawbacks of passive and active neutron measurement

Advantages:
- Direct measurement of U and Pu
- Suited to high density WP (metallic)
- Suited to irradiating WP
- Up to 870 liters drums
- Possible to localize

Drawbacks:
- Needs isotopic composition
- Perturbated by (α,n) reactions and Cm (passive measurement)
- Impact of activity distribution
- Sensitive to Hydrogène (light materials and concrete)
- Sensitive to neutron absorbers (B, Cl)
- Expensive (case of active measurement)
X IMAGING

- The X imaging allows an examination of the internal structure of the waste package to check:

 Geometric criterias: Thickness, centering, shielding, filling level
 - Spatial resolution 2 mm (drums) 1 cm (bulk containers)

 The homogeneity, the presence of defects:
 - Detection levels: void (cm3), cracks (2mm * cms)
 - Density discrimination: few % (drums) to 10% (bulk containers)

 The absence of forbidden wastes (limited to the recognition of form, density): wood, batteries, liquids, ...

 - Information on the whole volume of the WP
 - Allows the reduction of uncertainties of radiological measurements
 - If destructive analysis: Guide for coring or cutting
PRINCIPLE OF X IMAGING

- Measurement of the exponential attenuation of X Ray inside the Waste Package: attenuation factor μ linked to density

Source:
- X tube ou Accelerator

WP (rotation)

Detectors

Radiography or Tomography

Coupling with other technics to assess activity or fissil amount
HIGH ENERGY X IMAGING ON LARGE VOLUME WP

- Radiographies & Tomographies with 2D scintillant screen

Radiographies

Concreted drum

Internal drum

Compacted Waste

84 cm

Tomographic Slices

Mechanical parts identified

No density measurement (incomplete projections due to field-of-view)

120 cm

5 SEPTEMBRE 2016

8th International Summer School, 12-16 September 2016, ISPRA | PAGE 18
For medium (60 cm diam.) and large (> 1m diam.) waste drums, MegaVoltage source mandatory

Varian MiniLinatron 9 MeV
Eq. Dose rate: **20 Gy/min**
Pulse Freq : 300 Hz

Bremstrahlung Spectrum:

\[\langle E_X \rangle \approx 3 \text{ MeV} \]

Radiological Safety: imaging setup placed in underground irradiation cell (ex: Cinphonie)
THE ADVANTAGES AND DRAWBACKS OF X IMAGING

Advantages:
- Non destructive measurement to obtain a global view of the inside of a WP
- Under certain conditions: access to density, Z (R&D)
- Suited to high density and/or high volumes if high energy source available
- Suited to irradiating WP

Drawbacks:
- Mainly qualitative measurement
- High cost with high energy: source (LINAC) and underground cell
- Radiological constraints: underground cell, surveillance system
• Nuclear Waste Classification
• The Characterization of Nuclear Waste at CEA
• The 2nd level controls or “Supercontrols”
• The Legacy Waste
• R&D on measurement technics
• Conclusion
SOME SPECIFIC CONTROLS : THE “SUPERCONTROLS”

- Goal : to check the conformity of LIL-SL WP versus storage specification (CSA)
- Realized under Andra specification on samples of LIL-SL WP
- Small quantity : about 30 WP per year but …
- Very detailed controls : non destructives and destructives

- Non destructive controls :
 - X imaging
 - Activity measurement by coupling High Energy X imaging, neutron measurement and gamma spectrometry
 - Outgassing measurement

- Destructive controls :
 - Coring and sampling
 - Proficiency testings on samples : diffusion, permeability, porosity, mechanical resistance
 - Chemical analysis
 - Inventories
THE 2ND LEVEL CONTROLS OR “SUPERCONTROLS”

THE GREAT TOOLS USED FOR SUPERCONTROLS:
CINPHONIE IRRADIATION CELL – CHICADE FACILITY - CADARACHE

Cell view

- LINAC 9 MeV
- Mechanical bench load capacity 2t
- 2D Screen
- Elevator - load capacity 5t

Detection System

- Scintillant screen
- Mirror
- Low noise camera

L = 9,8 m
L = 6,5 m
H = 4 m
Upper slab:
thickness = 1,5 m
of reinforced concrete

8th International Summer School, 12-16 September 2016, ISPRA | PAGE 23
THE GREAT TOOLS USED FOR SUPERCONTROLS:

DRY CORING CELL ALCESTE- CHICADE FACILITY - CADARACHE

--> Homogeneous WP– 2m³ – 10 tons - 11.1TBq

On coring samples:
Check of confinement properties of matrices and waste: diffusion measurement, mechanical resistance, porosity, permeability
THE 2ND LEVEL CONTROLS OR “SUPERCONTROLS”

THE GREAT TOOLS USED FOR SUPERCONTROLS:
UNDER WATER CUTTING CELL CADECOL – CHICADE FACILITY – CADARACHE

-> homogeneous or heterogeneous WP - 16 tons – Max Activity 250 GBq (β, γ)
+ 35GBq (α)

-> Underwater coring and cutting
• Nuclear Waste Classification
• The Characterization of Nuclear Waste at CEA
• The 2nd level controls or “Supercontrols”
• The Legacy Waste
• R&D on measurement technics
• Conclusion
THE CONDITIONNED LEGACY WP

They are currently stored at Cadarache in several facilities
Mainly large size WP : from 0,5 to 2 m³
For most of them, it contains bulk or primary waste package blocked in a mortar.

- Case of WP produced after 1990 (870L, 500L MI et coques 500L) : characterization was performed according to the principles of current production.

- For older WP : the characterization may be insufficient and historical knowledge of their production and their contents is insufficient.

Radiological characterization of these WP is delicate either with passive than active measurements because:
- Interrogators radiation have difficulties to penetrate,
- The measurable emissions (γ or neutron) are strongly attenuated by the WP itself

--> R&D program on non destructive characterization but...
Some data will remain unaccessible
• Nuclear Waste Classification
• The Characterization of Nuclear Waste at CEA
• The 2nd level controls or “Supercontrols”
• The Legacy Waste
• R&D on measurement technics
• Conclusion
THE R&D FOR THE NON DESTRUCTIVE CHARACTERIZATION OF WP:

In collaboration with Andra:

- Active Photon Interrogation: fissile mass quantification by photofission delayed gamma rays
- High Energy Imaging - bi Energie: quantification of density + mass number Z
- the Cavity Ring Down Spectroscopy (CRDS)

And also:

- Passive neutron measurement with plastic scintillators instead of 3He counters

- The investments for big setups: SATURNE LINAC + 5 tons mechanical bench
ACTIVE PHOTON INTERROGATION

Objective: study the fissile mass quantification in large, long-lived medium activity radioactive waste packages

Principle: Active measurement: Photon interrogation. Photons are highly penetrating and allows to interrogate the centre of the WP and to produce fissions on U and Pu isotopes. Detection is done with photofission delayed gamma rays

Needs a High Energy linear accelerator: X > 15 Mev

Irradiation phase (detectors are protected) Measurement phase
HIGH ENERGY – BI ENERGY IMAGING

Objective: study the quantification of density and mass number Z in large, long-lived medium activity radioactive waste packages.

Principle: X HE imaging with two energies. Linear attenuation at 2 energies allows to quantify density and Z -> improve the discrimination of materials.

\[\frac{\mu(E_1)}{\mu(E_2)} = \frac{(\frac{\mu}{\rho})(Z,E_1)}{(\frac{\mu}{\rho})(Z,E_2)} = R(E_1, E_2, Z) \]

\(E_{BE} = 4.21 \text{ MeV}, \ E_{HE} = 6.56 \text{ MeV} \)

\(\mu_1/\mu_2 \) measured

Estimated Z
THE CRDS(*) FOR TRITIUM OUTGASSING MEASUREMENT

Objective : Tritium measurement from the degassing of the FMA waste packages by an alternative method compared to liquid scintillation.

Principle : Injection of a continuous laser beam in an optical cavity formed with two highly reflective mirrors. Molecular concentration is calculated from the measured absorption coefficient.

Requires trapping phase and preliminary concentration of Tritium

(*) Cavity Ring Down Spectroscopy
PASSIVE NEUTRON MEASUREMENT WITH PLASTIC SCINTILLATORS

Objective: Consider replacing 3He counters, whose cost increases sharply, with plastic scintillators for passive neutron measurement.

- Advantage of plastic scintillators: reduced cost and sensitivity equivalent to 3He
- Drawbacks: sensitivity to gamma radiation and crosstalk

PhD B. Simony: “Caractérisation du plutonium par analyse de coïncidences avec des scintillateurs organiques”

Diagram:
- Inelastique scattering in the shield ($n,n'\gamma$)
- Crosstalk following elasitique scattering (n,n')
- Crosstalk following Compton effect (γ,γ')
- Reaction ($n,2n$) in the shield
- Crosstalk following inelastique scattering ($n,n'\gamma$)
THE INVESTMENTS IN R&D TOOLS

- Current features of the platform of imaging Cinphonie:
 - single energy LINAC 9 MeV, 20 Gy/min
 - Resolution ~ 3 mm
 - WP mass < 2 tons

- From 2018, in conjunction with R&D on active photon interrogation and bi energy interrogation:
 - Powerful LINAC until 25 MeV, 250 Gy/min
 - Better resolution: 0.5 - 2 mm
 - Multi energy beam
 - Mechanical bench up to 5 tons

- Non-nuclear possible application: control of massive mechanical components
THE CHARACTERIZATION OF NUCLEAR WASTE AT CEA

- Nuclear Waste Classification
- The Characterization of Nuclear Waste at CEA
- The 2nd level controls or “Supercontrols”
- The Legacy Waste
- R&D on measurement technics
- Conclusion
The characterization of nuclear waste is essential for the knowledge, storage, transportation and final disposal of waste, and to check the compliance with waste acceptance criterias.

It is constantly improving:
- Improvements by the producers by taking into consideration the characterization needs
- Improvement of nondestructive and destructive measurement technics (R&D CEA-Andra)

The CEA realizes key investments for R&D : irradiation cell CINPHONIE, high energy tomograph SATURNE and mechanical bench 5 tons

Prospect : increase of requirement by Andra for accepting IL-LL and HA WP at Cigeo: list of 144 RN to be declared, declaration thresholds at 0.1 Bq/g, list of prohibited substances, special, limited, to be declared ……
THANKS !!